
© ITIV 2017 DHL Exercise 3 1

Prof. Dr.-Ing. Dr. h.c. J. Becker

Digital Hardware Design Laboratory (DHL)

Institut für Technik der Informationsverarbeitung, Karlsruher Institut für Technologie (KIT)

Exercise 3 – State Machine with BRAM

1 INTRODUCTION 1

2 PREPARATION 1

3 TASK DESCRIPTION 2

4 SUBTASKS 3

4.1 Flasher component and BRAM implementation 3

4.2 Creation of the state machine 3

4.3 Generation of the Testbench stimuli 3

4.4 Test on the Hardware 3

1 Introduction

In this exercise a storage game needs is to be implemented. Here, the user can store desired

information in a memory in a specific location. Afterwards the stored data sets can be

checked and the result is visualized by a fast (success) or slowly (wrong input) flashing LED.

The game models a cache file, a processor can store data to and which needs to be checked in

order to determine whether the datum is present inside the memory.

The core of this exercise is a final state machine for directing the control flow of the automat.

Secondly, since cache files can be very large, a Block RAM (BRAM) needs to be used in

order to reduce the storage’s complexity. A BRAM is a so-called hard-IP which is present (in

limited number) as dedicated slices in specific columns of the FPGA fabric.

2 Preparation

Prior to the laboratory afternoon for this exercise you should get familiar with the following

topics:

 Finite State Machines and how they can be modelled in VHDL

o See also additional material “VHDL State Machine Example”

 Basics on how to use BRAMs on Xilinx FPGAs

o Which types of BRAM are available on Xilinx FPGAs?

o How can BRAMs be instantiated in VHDL designs?

o See additional material „ug901 Vivado Synthesis Guide“:

 Appendix A - RAM_STYLE Attribute

© ITIV 2017 DHL Exercise 3 2

 Appendix C - RAM HDL Coding Guidelines

3 Task description

The automat should behave in the following way:

States:

 There need to be four different states for

o Doing nothing (“idle”)

o Storing information (“store_information”; mode ‘1’)

o Check input (mode ‘0’)

 Check input information (“check_input”)

 Output the result of the comparison (“output_result”)

 In “idle” state the mode switch determines the next state

 In “store_information” and “check_input” the mode switch can interrupt the operation

idle state

 In “store_information”, pressing the enter signal stores information “led_pin” to the BRAM.

Afterwards a transition to the idle states occurs. The current content of the selected BRAM is

displayed by the LED_pin signal.

 In “check_input”, by pressing enter, the information is buffered and a transition to the

“output_result” state is triggered. The current input is displayed at “led_pin”. The

comparison is not done in this state because of the readout delay of the BRAM of one clock

cycle.

 In “output_result” the buffered signal is compared with the output from the BRAM (only

once when entering the state). The result of the comparison is visualized by the flashing LED

led_status. The current input is displayed at “led_pin”. Pressing enter causes a transition to

the idle states and stops the result visualization

Inputs:

 The debouncing and one-clock-cycle conversion from exercise one needs to be used in order

to determin a stable signal for “ButtonC”

 The inputs need to be accessed (and potentially buffered) by synchronous processes only

 Switches:

o Switch 7: Select mode to ‘1’ or ‘0’

o SW6 and SW5: Control address which accesses the BRAM

o SW3 downto SW0: Input information

 Push button:

o the cleaned BTNC signal is used as an “enter” signal

LEDs:

 A fast and a slow flasher needs to be used

o On Success: “led_status” needs to flash fast

o On “Wrong input”: “led_status” needs to flash slowly

o “led_status” is high in the “Store_information” state

o Else the LED is turned off

 led_pin signal (3 downto 0): Output of information from input or BRAM data output

BRAM:

 Use a reasonable depth of the BRAM

© ITIV 2017 DHL Exercise 3 3

 Make the BRAM 5 bits wide. Initialize the entries to “11111”. Stored signals have the format

“ ’0’, SW3, SW2, SW1, SW0”. On reads the 5-bit output is compared with the input signal a

‘0’ is attached to in front. Like this, the BRAM entries will be initiated to values which will

never occur as input data and thus no comparison to the initially “empty” BRAM will cause

the result “success”.

4 Subtasks

4.1 Flasher component and BRAM implementation

You need to extend the flasher component in order to be able to set the flashing rate of the

LEDs by modifying the input parameters (generics). Use a factor of eight between the fast a

slowly flashing LED’s toggling rate.

The BRAM should be implemented as separate entity. Complete the BRAM architecture

given in the code templates to get a working BRAM module.

4.2 Creation of the state machine

Visualize the state machine using pen and paper and add the state transition conditions and

the values of the output signal changes.

4.3 Generation of the Testbench stimuli

Apply the knowledge gained from the last exercise in order to create the Testbench which is

able to test for the correct operation of the final statemachine.

Derive the required information which needs to be input to the state machine for the

following operation sequence – in the following description all signals are of the format (x

downto 0):

1. Store information “0001” to address “00”

2. Trigger a check of input “0000” to address “00” which fails

3. Trigger a check of input “0001” to address “00” which succeeds

4. Trigger a check of input “0001” to address “10” which fails

4.4 Test on the Hardware

Synthesize your design and test it on the ZEDBOARD hardware. Does everything work as

expected?

